
Supplementary Analysis

Expected modularity

The strength of community structure in a network with K partitions is defined as

Q =

K∑
k=1

(ekk − a2
k) (S1)

where ekk denotes the fraction of edges within the module k and ak is the fraction of the total
edges of nodes of module k.

Now, if dk is the average-degree of the module k, dkw is its average within-module degree and sk
is the total number of nodes in the module, then equation S1 can be written as:

Q =
K∑
k=1

dkwsk
d̄n
−

(
dksk
d̄n

)2
 (S2)

where d is the average degree of the network and the network size and total modules is n and
K respectively. If the average-degree of each module is equal to the average degree of the network,
i.e. d1 = d2 = ... = dK = d, and if the average within-degree of each module is equal to the average
within-degree of the network, i.e. d1

w = d2
w = ... = dKw = dw, then equation (S2) can be written as:

Q =

K∑
k=1

[
dwsk
d̄n
−
(sk
n

)2
]

=
dw

d
−

K∑
k=1

(sk
n

)2
(S3)

where dw is the average within-module degree of the network. Now, if all the modules are of
equal sizes, equation (S3) can be further reduced to:

Q =
dw

d
− 1

K
(S4)

Thus, the expected modularity in this case can be expressed in terms of the ratio of average
module degree dw and average total degree d of the network, as well as the total number of partitions
or modules K in the network.

Tolerance on average-degree and average within-degree of individ-
ual modules

We note that Equation S3 can be used to estimate modularity only when module-level average
degree and average within-degree match up to the overall network average-degree and average
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Figure S1: Degree distribution of the four biological networks. The within-degree distribution
roughly follows the total degree distribution in all of the networks.

within-degree, i.e., d1 = d2 = ... = dK = d and d1
w = d2

w = ... = dKw = dw. To ensure that
these conditions are valid we used rejection sampling of both degree and within-degree sequence.
We define the tolerance on the expected modularity, ε, to be 0.01 and calculate the tolerance on
within-degree and degree sequence as follows:

Let εdw be the tolerance on sampled within-degree sequence. We define εd = 0.5εdw to be the
tolerance on degree sequence. From Eq. (S2), the observed modularity can be thus written as:

Q̂ =

K∑
k=1

[(dw ± εdw).sk

d.n
− [
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d.n
]2
]
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(S5)

By ignoring the ε2d term which is negligible. Q̂ can be further simplified to:

Q̂ = Q±
K∑
k=1

[εdw .sk
d.n

−
2.εd.d.s

2
k

d
2
.n2

]
= Q± εdw

d
−

K∑
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[εdw .s2
k
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]
(S6)

as Q̂−Q = ε = 0.01, εdw can be thus calculated as

0.01 =
εdw
d

[
1−

K∑
k=1

s2
k

n2

]
(S7)
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Within-module degree distribution follows the total degree distri-
bution

In Figure S1 we plotted the probability density of the total-degree and within-degree distribution
for four empirical biological networks namely a) Metabolic interaction network of Caenorhabditis
elegans [1]; b) Food web, depicting the network of trophic interactions at Little Rock Lake in Wis-
consin [2]; c) Protein interaction in Yeast [3]; and d) Network of social interactions in a community
of 62 dolphins living off Doubtful Sound, New Zealand [4]. We found that the within-degree dis-
tribution of most of the empirical networks closely follows the network’s total degree distribution
indicating a fractal like behavior of the network. Based on this observation we limited our discus-
sions to modular random networks which have similar within-module and total degree distribution.
However, our model can be extended to allow for arbitrary within-degree distributions or sequences.
To demonstrate, we generated examples of graphs with arbitrary within-degree distributions (Table
S1; fourth, fifth and sixth network type) and compared their network properties to modular graphs
with similar degree and within-degree distributions (Table S1; first, second and third network type).
The modularity value of all generate random graphs was fixed at 0.2. We found that the network
properties of clustering coefficient and average path length to be similiar across all the network
types (Table S1). Degree assortativity value is close to zero for all network types except for graphs
with Poisson degree distribution and geometric within-degree distribution where edge connections
are constrained.

Rejection rate of degree and within-degree sequence

Here we estimate the rejection rate of sampling degree and within-degree sequences during the
generation of 2000 nodes networks with mean degree 10. The rejection rates are calculated based
on the number of times each sequence is rejected per graph generation process. Average rejection
rate is calculated over 50 such generation process. Figure S2 shows the expectation of the rejection
rate, which we estimate by sampling the average rejection rate ten times. As expected, the rejection
rate of sampling degree sequence is similar across the three modularity values. The rejection rate
of within-degree sequence increases with network modularity.

Generating disassortative modular random graphs

Anti-modular or disassortative modular random graphs are graphs in which nodes tend to connect
to nodes of other modules. This results in within-module edge density to be less than what is
expected at random and the value of modularity coefficient, Q, to be negative. In Figure S3 we
generate both anti-modular and modular random graphs with identical size (n = 150), average
degree (d = 5), number of modules (K = 3) and degree distribution (power-law). The absolute
Q value of both the graphs is identical (i.e. |Q| = 0.2), but anti-modular graph (Fig S3a) has
between-module edge density higher than within-module edge density, whereas the opposite is true
in the modular random graph (Fig S3b).
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Figure S2: Rejection rate of degree and within-degree sequence sampling for random modular
graphs with geometric degree distribution and (a-c) Poisson degree distribution (d-f) Geometric
degree distribution. Rejection rate is estimated over three modularity values. The generated graphs
have 2000 nodes, mean network degree of 10, and consist of 10 communities.

Figure S3: Generating disassortative modular random graphs: Modular random graphs with
n = 150,m = 375,K = 3, P (s = 50) = 1and pk is power law with modularity values of : a) Q=
-0.2 and b) Q= 0.2. In anti-modular (disassortative) graphs the between-module edge density is
more than within-module edge density, whereas the opposite is true in modular random graphs.
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Figure S4: Comparing modular random graphs and stochastic block model (SBM) graphs: Network
property of (a) Degree assortativity, (b) Clustering coefficient and (c) Path length in modular
random graphs (MRG) and stochastic block model (SBM) graphs of 2000 nodes, mean degree 10
and 10 modules on increasing modularity (Q). Each data point represents the average value of 50
random graphs. The module size of each graph follows a Poisson distribution with mean size of
200. Data points for path length of SBM geometric networks is missing as the generated networks
are disconnected. Standard deviations are plotted as error bars.

Comparing structural properties of modular random and SBM graphs

Here we compare the structural properties of modular random graphs generated by our model
to the ones generated by degree-corrected stochastic block models (DC-SBM) as described in [5].
SBM is defined by a k×k stochastic block matrix, where k is the number of modules and Mij gives
the probability that a node of module i is connected to a node of module j. The DC-SBM version
further defines a propensity parameter γu that controls the expected degree of node u.

We used a Python module (graph-tool) to generated SBM graphs. Since a formal relationship
between the SBM parameters and modularity does not exist, we manually adjusted the parameters
values to achieve the desired level of modularity and network parameters. Figure S4 shows two types
of SBM graphs: (a) random graphs with Poisson degree-distribution and Poisson within-degree
distribution, and (b) random graphs with geometric degree and within-module degree-distribution.
Using the Python module and desired network parameters, we were able to generate graphs with
a maximum modularity value of 0.4 for both these network types. We therefore generated fifty
random graphs at each level modularity and estimated the average values of degree assortativity
(Figure S4a), clustering coefficient (Figure S4b) and path length (Figure S4c) of these graphs.
The module size follows a Poisson distribution in each of these graphs. To compare DC-SBM to
the modular random graphs generated by our model, we generated graphs with identical network
parameters and modularity values and report their network properties was well. As Figure S4
shows the structural properties of the graphs generated from the graph-tool Python module are
similar to those generated by our algorithm. We note, however, that this is a limited comparison
and highy dependent on the implmentation of the SBM in graph-tool. As discussed in the Previous
Work section of the main article, full use of the SBM for generating benchmark or null networks
remains to be fully explored.
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Figure S5: Network property of (a) Degree assortativity, (b) Clustering coefficient and (c) Path
length in random modular graphs of mean degree 5 and 10 modules on increasing network size (n).
Each data point represents the average value of 50 random graphs. Standard deviations are plotted
as error bars.

Effect of network size on network properties of modular random
graphs

Here we varied the network size keeping the ratio of community size to the total network size
(i.e s/n = 0.1) constant. As each network comprised 10 communities, increase in total network
size also corresponds to the increase in average community size. We observed that, except for very
small networks, the assortativity coefficient remains close to zero for all network size (Figure S5a).
The negative degree correlation for small networks can be explained by the structural degree cut-
off constraint in the communities, i.e. indegree of nodes in a community can attain a value of
at-most equal to its community sizes (max(wd) ≤ nc). For smaller networks, the highest value of
wd is constrained by the small average community size, which results in the total number of high
indegree to be much less than expected. Thus, during the randomization step the high indegree
nodes connect much more to the low degree nodes which result in disassortative network. A similar
observation was noted in hierarchically modular networks by Jing [6]. Clustering coefficient is
higher for small networks but decreases to a value close to zero in networks with more than 400
nodes, which is observed in larger networks as well (Figure S5b). As expected, the average shortest
path length increases proportionally with network size (Figure S5c).

Effect of average network degree on network properties of modular
random graphs

We next tested the effect of network mean degree on other properties of the network. We observed
that geometric and power-law null modular networks become disassortative with higher d value,
while Poisson networks do not show any assortative interaction at any value d (Figure S6a). The
tendency of geometric and power-law null modular networks to become disassortative could again
be due to the structural cut-off constraint of nodal indegrees. As the average degree increases, the
graph becomes more dense and hence creates more implicit triangles, resulting in a gradual increase
in clustering (Figure S6b). Decrease in average shortest path length with increase in mean network

6



Figure S6: Network property of (a) Degree assortativity, (b) Clustering coefficient and (c) Path
length in random modular graphs with 10 modules over a range of mean network degree. Each net-
work has 1000 nodes. The data point represents the average value of 50 random graphs. Standard
deviations are plotted as error bars.

Figure S7: Network property of (a) Degree assortativity, (b) Clustering coefficient and (c) Path
length in random modular graphs of size 1000 with mean degree 10 but different number of modules.
As the total network size is fixed (=1000) and each module in a network is of equal size, increasing
the number of modules in a network corresponds to a decrease in average community size. Each
data point represents the average value of 50 random graphs. Standard deviations are plotted as
error bars.

degree is also well known [7, 8].

Effect of average community size on network properties of modular
random graphs

We also investigated the effect of average community size on the network properties of the null
modular network. Figure S7 summarizes the results for networks with a network size of 1000 but
different number of modules. A smaller number of modules thus corresponds to a larger average
community size. We observed that the community size does not effect the assortative interaction for
Poisson networks (Figure S7a). Geometric and power-law networks show disassortative interactions
in networks with small community size due to structural degree cut-off constraint explained above.
The density of edges within smaller communities is high, which causes high clustering (Figure S7b).
However, the average shortest path length is unaffected by the community size (Figure S7c) as the
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Figure S8: Performance of various community detection algorithms on random modular networks
with Poisson degree distribution. Network size n= 2000, mean degree (d)=10, number of modules
(m)=10. Each data point represents the average results of 25 detection runs on a generated modular
random network. For each Q value 10 modular random networks were generated.

total network size and network mean degree is constant across all network types.

Performance of other community detection algorithms on modular
random graphs

Here we estimated the modularity of our generated random modular Poisson (Figure S8), geomet-
ric (Figure S9), and power-law (Figure S10) networks using four additional community detection
algorithms namely: (a) Spinglass or Potts model [9]; (b) Walktrap algorithm [10], (c) Infomap
algorithm [11], and (d) Label propagation model [12]. Overall, the accuracy of these algorithms
improves with increasing Q value.

Accuracy of network partitioning by Lovain and fast modularity
algorithm

We tested the accuracy of network partitioning by Louvain and fast modularity algorithm (Fig-
ure S11) in random modular networks with a mean network degree of 10 using Jaccard similarity
index (J ) and variation of information (VI) as a measure of similarity. Jaccard index is the ratio
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Figure S9: Performance of various community detection algorithms on random modular networks
with geometric degree distribution. Network size n= 2000, mean degree (d)=10, number of modules
(m)=10. Each data point represents the average results of 25 detection runs on a generated modular
random network. For each Q value 10 modular random networks were generated.

.
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Figure S10: Performance of various community detection algorithms on random modular networks
with power-law degree distribution. Network size n= 2000, mean degree (d) = 10, number of
modules (m)=10. Each data point represents the average results of 25 detection runs on a generated
modular random network. For each Q value 10 modular random networks were generated.

.
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Figure S11: Accuracy of partitions detected by Louvain and fast modularity algorithm in networks
with mean degree 10 measured by Jaccard similarity and variation of information index. Fill
circles, open circles and triangles represent networks with Poisson, geometric and power-law degree
distribution respectively. Each data point represents the average result for ten random networks.
Error bars denote standard deviations.
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of the number of nodes classified in the same module by both the partitions to the total number of
nodal pairs, i.e.

J =
w11

w11 + w01 + w10
(S8)

where w11 represent the number of nodal pairs that are in the same module for both the
partitions, w00 are the nodal pairs that are in different modules in both the partitions and w10(w01)
are the number of pairs that are put together in the same module by one partition but not by the
other. The value of Jaccard index ranges from 0 to 1, with 1 indicating a perfect partition match.

VI measures the amount of information lost and gained in changing from clustering C to clus-
tering C ′ [13] and is defined as

V I(C,C ′) = H(C|C ′) +H(C ′|C) (S9)

or,
V I(C,C ′) = [H(C)− I(C|C ′)]− [H(C ′)− I(C|C ′)] (S10)

where H(C) and H(C ′) represents uncertainty in cluster C and C ′ respectively, and I(C|C ′) is
the mutual information between the two clustering. In other words, the first term of equation (S10)
measures the amount of information that we loose, while the second term measures the amount of
information that we gain, when going to clustering C ′ from C.

Null analysis of empirical networks

We generated random modular graphs for each of the four biological networks by randomizing the
within-edge and between-edge connections. Specifically, we generated 50 such random graphs using
the estimates of total degree distribution, within-degree distribution, and distribution of module
size P (s) as the empirical network but used our model to connect the within- and between- edges.
We next measured networks properties such as clustering (C ), average path length (L), assortativity
(r) for each of the random network and computed the ensemble mean. Table 1 records the value of
each of these properties for the empirical networks and the relative deviation of the ensemble mean
of random modular graphs from the observed value (i.e. deviation = [observed value - ensemble
mean/observed value])
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Table S1: Comparisons of random modular networks with different degree- and within-degree
distributions type.

Network types Modularity,
Q

Degree
assortativity,
r

Clustering
coefficient, C

Path length
L

1) Poisson degree distribution, Poisson within-degree
distribution

0.2 [0.004] 0.02 [0.009] 0.01 [0] 3.56 [0.002]

2) Geometric degree distribution, Geometric
within-degree distribution

0.2 [0.003] -0.03 [0.009] 0.02 [0.001] 3.48 [0.010]

3) Power-law degree distribution, Power-law
within-degree distribution

0.2 [0.002] -0.01 [0.009] 0.01 [0] 3.48 [0.009]

4) Poisson degree distribution, Geometric
within-degree distribution

0.2 [0.003] 0.13 [0.009] 0.007 [0] 3.57 [0.002]

5) Geometric degree distribution, Power-law
within-degree distribution

0.2 [0.002] -0.03 [0.009] 0.02 [0.001] 3.49 [0.013]

6) Geometric degree distribution, Poisson
within-degree distribution

0.2 [0.004] 0.03 [0.009] 0.01 [0.001] 3.50 [0.011]

Network property of assortativity, clustering coefficient, and path length in random modular graphs of size 2000 with mean
degree 10. Each network type represents random modular graphs with a specific degree and within-degree distribution.
Module sizes of all the generated networks follow a Poisson distribution. Each value represents an average of 50 random

graphs. Standard deviations are included within square brackets.

Table S2: Comparisons of empirical and random networks with randomized within-edge and
between-edge connections

Biological Network
Type

N k Q C L r

Little Rock Foodweb
Interactions

183 26.79 0.36 0.32 [-88%] 2.15[1%] -0.26[69%]

Yeast Protein
Interactions

4713 6.31 0.54 0.09 [-44%] - -0.14 [228%]

C.elegans Metabolic
Interactions

453 9.01 0.44 0.65 [22%] 2.66 [1%] -0.22 [0]

Dolphin Social
Interaction

62 5.13 0.52 0.26 [-12%] 3.36 [1%] -0.04 [450%]

For each of the four empirical network we generated 50 null modular network constrained to have the same total-, within- and
between-degree list as the empirical network. The table summarizes network statistics of empirical network viz. the network

size (N ), average network degree (k), modularity(Q), clustering (C ), average shortest path-length (L) and degree
assortitativity (r). The value in brackets is the relative deviation of ensemble mean of null modular networks from the

observed value. The path length value for the empirical Yeast-Protein interaction network is missing as the network is not
fully-connected
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